導航:首頁 > 軌道交通 > 軌道交通信號技術的發展歷程

軌道交通信號技術的發展歷程

發布時間:2021-04-19 18:12:36

A. 信號處理發展史

自1982年第一片數字信號處理器TMS320ClO產生以來,DSP的發展大致經歷了四個階段,也形成了目前DSP的四代產品。
(1)第一代DSP
1982年TI(Texas
Instruments)公司推出的TMS320ClO是第一代DSP的代表,它是16位定點DSP,首次採用哈佛結構,完成乘累加運算時間為390ns,處理速度較慢。
(2)第二代DSP

1987年Motorola公司推出了DSP56001,它是24位定點DSP,完成乘累加運算時間為75ns,其他產品如AT&T公司的DSPl6A,ADI(Analog
Devices Inc.)公司的ADSP一2100,TI公司的TMS320C50等,代表了第二代DSP產品。
(3)第三代DSP

1995年出現了第三代定點DSP產品,如Motorola公司的DSP56301,ADI公司的ADSP一2180,TI公司的TMS320C541等。這些產品改進了內部結構,增加了並行處理單元,擴展了內部存儲器容量,提高了處理速度,指令周期大約20ns左右。同期出現了功能更強的32位浮點處理的DSP,如Motorola公司的DSP56000,TI公司的TMS320C3X,ADI公司的ADSP-21020等。

(4)第四代DSP

最近幾年推出了性能更高的第四代處理器,包括並行處理結構DSP和超高性能DSP.如ADI公司的32位浮點處理器SHRAC系列ADSP2106X、TI公司的TMS320C4X等,以及近兩年TI公司推出的並行處理定點系列TMS320C62XX、浮點系列TMS320C67XX,ADI公司的並行處理浮點系列ADSP21160和TigerSHARC系列ADSP—TSl01S、ADSP—TS201等。

目前DSP生產廠家中最有影響的是TI公司、ADI公司、AT&T公司和Motorola公司。其中TI公司和ADI公司的產品系列最全,市場佔有率最高。

DSP處理器有定點處理和浮點處理兩大類,適用於不同場合。早期的定點處理DSP可以勝任大多數數字信號處理應用,但其可處理的數據的動態范圍有限,如16位定點DSP動態范圍僅96dB。在某些數據的動態范圍很大的場合,按定點處理可能會發生數據溢出,在編程時需要使用移位定標措施或者定點指令模擬浮點運算,使程序執行速度大大降低。浮點處理器的出現解決了這些問題,它拓展了數據動態范圍。浮點DSP的綜合性能優於定點DSP,在相同的指令周期內,它既可以完成32位定點運算,也可以完成浮點運算。而且其匯編源程序容易編寫、可讀性好、調試方便。
隨著DSP本身的不斷發展,它的開發工具也不斷發展和完善。早期的DSP開發只能使用簡單的命令行形式的編譯器和鏈接器,使用匯編語言編程,且缺乏調試工具,因此開發難度大、周期長。近幾年來,DSP的開發工具向可視化發展,DSP生產廠家和第三方提供了各種軟體開發環境和硬體模擬調試工具,支持DSP的程序開發。如TI公司的Code
Composer系列(cc2000, cc5000,cc6000),ADI公司的Visual
DSP++等。硬體調試工具普遍採用JTAG掃描方式支持在線調試、支持多處理器調試,還提供了各種評估板。軟體和硬體調試工具的發展,使DSP程序的開發過程變得相對容易。此外,目前許多類型的DSP開發過程中可以使用c編譯器,簡化了開發過程。但是針對定點DSP的c編譯器編譯效率不高,而浮點DSP的c編譯器的效率很高,這使得浮點DSP的程序開發更簡單和方便,縮短了開發周期,降低了開發成本。隨著集成電路技術的發展,DSP處理器的運算能力不斷提高,從早期的5MIPS(百萬條指令/秒),目前已經達到1GFLOPS(千兆次浮點運算/秒)以上,如TI公司的TMS320C6201和TMS320C6701處理能力達到1GFLOPS,ADI公司的ADSP—TSl01S達到1.5GFLOPS,ADSP。TS201S達到3GFLOPS。但對於某些信號處理應用而言,要求信號處理能力達到每秒幾百億、上千億次運算。這可以通過提高DSP主頻或者通過並行處理來滿足,提高主頻所遇到的難度和付出的成本越來越大,單處理器性能的提高受到許多因素的限制。因此很多DSP處理器具有多處理器擴展接LI,可以方便地實現多處理器並行處理結構,如TI公司的TMS320C4X,ADI公司的ADS-2106X等。新型DSP內部引入了並行處理技術,以滿足處理速度的要求,如TI公司的TMS320C6201和TMS320C6701,ADI公司的ADSP—TSl01S和ADSP—TS201S等。

B. 軌道交通信號技術發展的現狀及前景

文藝 你居然跑到網路來問 自己搜吧

C. 軌道交通信號系統的簡介

城市軌道交通信號系統是保證列車運行安全,實現行車指揮和列車運行現代化,提高運輸效率的關鍵系統設備。 城市軌道交通信號系統通常由列車自動控制系統(Automatic Train Control,簡稱ATC)組成,ATC系統包括三個子系統: — 列車自動監控系統(Automatic Train Supervision,簡稱ATS) — 列車自動防護子系統(Automatic Train Protection,簡稱ATP) — 列車自動運行系統(Automatic Train Operation,簡稱ATO) 三個子系統通過信息交換網路構成閉環系統,實現地面控制與車上控制結合、現地控制與中央控制結合,構成一個以安全設備為基礎,集行車指揮、運行調整以及列車駕駛自動化等功能為一體的列車自動控制系統。 一、列車自動控制系統(ATC)分類 1、按閉塞布點方式:可分為固定式和移動式。固定閉塞方式中按控制方式,又可分為速度碼模式(台階式)和目標距離碼模式(曲線式)。 2、按機車信號傳輸方式:可分為連續式和點式。 3、按各系統設備所處地域可分為:控制中心子系統、車站及軌旁子系統、車載設備子系統、車場子系統。 二、固定閉塞ATC系統 固定閉塞ATC系統是指基於傳統軌道電路的自動閉塞方式,閉塞分區按線路條件經牽引計算來確定,一旦劃定將固定不變。列車以閉塞分區為最小行車間隔,ATC系統根據這一特點實現行車指揮和列車運行的自動控制。固定閉塞ATC系統又可分為速度碼模式和目標距離碼模式。 1、 速度碼模式(台階式) 如北京地鐵上海地鐵1號線分別引進的英國西屋公司和美國GRS公司的ATC系統均屬此類ATC系統,該系統屬70~80年代的產品,技術成熟、造價較低,但因閉塞分區長度的設計受限於最不利線路條件和最低列車性能,不利於提高線路運輸效率。固定閉塞速度碼模式ATC是基於普通音頻軌道電路,軌道電路傳輸信息量少,對應每個閉塞分區只能傳送一個信息代碼,從控制方式可分成入口控制和出口控制兩種,從軌道電路類型劃分可分為有絕緣和無絕緣軌道電路兩種。 以出口防護方式為例,軌道電路傳輸的信息即該區段所規定的出口速度命令碼,當列車運行的出口速度大於本區段的出口命令碼所規定的速度時,車載設備便對列車實施懲罰性制動,以保證列車運行的安全。由於列車監控採用出口檢查方式,為保證列車安全追蹤運行,需要一個完整的閉塞分區作為列車的安全保護距離,限制了線路通過能力的進一步提高和發揮。能提供此類產品的公司有:英國WSL公司、美國GRS公司、法國ALSTOM公司、德國SIEMENZ公司等。 2、 目標距離碼模式(曲線式) 目標距離碼模式一般採用音頻數字軌道電路或音頻軌道電路加電纜環線或音頻軌道電路加應答器,具有較大的信息傳輸量和較強的抗干擾能力。通過音頻數字軌道電路發送設備或應答器向車載設備提供目標速度、目標距離、線路狀態(曲線半徑、坡道等數據)等信息,車載設備結合固定的車輛性能數據計算出適合於列車運行的目標距離速度模式曲線(最終形成一段曲線控制方式),保證列車在目標距離速度模式曲線下有序運行。不僅增強了列車運行的舒適度,而且列車追蹤運行的最小安全間隔縮短為安全保護距離,有利於提高線路的通過能力。如上海地鐵2號線引進美國US&S公司、明珠線引進法國ALSTOM公司和廣州地鐵1、2號線引進德國西門子公司的ATC系統均屬此類。 三、移動閉塞ATC系統 移動閉塞方式的ATC系統通常採用無線通信、地面交叉感應環線、波導等媒體,向列控車載設備傳遞信息。列車安全間隔距離是根據最大允許車速、當前停車點位置、線路等信息計算得出,信息被循環更新,以保證列車不間斷收到即時信息。 移動閉塞ATC系統是利用列車和地面間的雙向數據通信設備,使地面信號設備可以得到每一列車連續的位置信息,並距此計算出每一列車的運行許可權,動態更新發送給列車,列車根據接收到的運行許可權和自身的運行狀態,計算出列車運行的速度曲線,實現精確的定點停車,實現完全防護的列車雙向運行模式,更有利於線路通過能力的充分發揮。 移動閉塞ATC系統在我國還未有應用實例,國外能提供此類系統的公司有:阿爾卡特公司交叉感應電纜作為傳輸媒介的ATC系統,在加拿大溫哥華「天車線」和香港KCRC西部鐵路等應用,技術比較成熟,但交叉感應軌間電纜給線路日常養護帶來不便;美國哈蒙公司基於擴頻電台通信的移動閉塞應用在舊金山BART線,其系統結構、系統運用尚不成熟;阿爾斯通公司基於波導傳輸信息的移動閉塞正在新加坡西北線試驗段安裝調試。 四、信號系統基本功能 1、 列車自動監控子系統(ATS) ATS系統由控制中心、車站、車場以及車載設備組成。ATS系統在ATP系統的支持下完成對列車運行的自動監控,實現以下基本功能: (1)通過ATS車站設備,能夠採集軌旁及車載ATP提供的軌道佔用狀態、進路狀態、列車運行狀態以及信號設備故障等控制和監督列車運行的基礎信息。 (2)根據聯鎖表、計劃運行圖及列車位置,自動生成輸出進路控制命令,傳送至車站聯鎖設備,設置列車進路、控制列車停站時分。 (3)列車識別跟蹤、傳遞和顯示功能。系統能自動完成正線區段內列車識別號(服務號、目的地號、車體號)跟蹤,列車識別號可由中央ATS自動生成或調度員人工設定、修改,也可由列車經車—地通信向ATS發送識別號等信息。 (4)列車計劃與實跡運行圖的比較和計算機輔助調度功能。能根據列車運行實際的偏離情況,自動生成調整計劃供調度員參考或自動調整列車停站時分,控制發車時間。 (5)ATS中央故障情況下的降級處理,由調度員人工介入設置進路,對列車運行進行調整,由ATS車站完成自動進路或根據列車識別號進行自動信號控制,由車站人工進行進路控制。 (6)在計算機輔助下完成對列車基本運行圖的編制及管理,並具有較強的人工介入能力。通過設在車輛段的終端,向車輛段管理及行車人員提供必要的信息,以便編制車輛運用計劃和行車計劃。 (7)列車運行顯示屏及調度台顯示器,能對軌道區段、道岔、信號機和在線運行列車等進行監視,能在行調工作站上給出設備故障報警及故障源提示。 (8)能在中央專用設備上提供模擬和演示功能,用於培訓及參觀。能自動進行運行報表統計,並根據要求進行顯示列印。 (9)能在車站控制模式下與計算機聯鎖設備結合,將部分或所有信號機置於自動模式狀態。 (10)向通信無線、廣播、旅客向導系統提供必要的信息。 2 、列車自動防護子系統(ATP) ATP系統由地面設備、車載設備組成,監督列車在安全速度下運行,確保列車一旦超過規定速度,立即施行制動,主要實現以下功能: (1)自動連續地對列車位置進行檢測,並向列車發送必要的速度、距離、線路條件等信息,以確定列車運行的最大安全速度。提供列車速度保護,在列車超速時提供常用制動或緊急制動,保證前行與後續列車之間的安全間隔,滿足正向行車時的設計行車間隔和折返間隔。對反向運行列車能進行ATP防護。 (2)確保列車進路正確及列車的運行安全。確保同一徑路上的不同列車之間具有足夠的安全距離,以及等防止列車側面沖撞。 (3)防止列車超速運行,保證列車速度不超過線路、道岔、車輛等規定的允許速度。 (4)為列車車門的開啟提供安全、可靠的信息。 (5)根據聯鎖設備提供的進路上軌道區間運行方向,確定相應軌道電路發碼方向。 (6)任何車—地通信中斷以及列車的非預期移動(含退行)、任何列車完整性電路的中斷、列車超速(含臨時限速)、車載設備故障等均將產生安全性制動。 (7)實現與ATS的介面和有關的交換信息。 (8)系統的自診斷、故障報警、記錄。 (9)列車的實際速度、推薦速度、目標速度、目標距離等信息的記錄和顯示。具有人工或自動輪徑磨耗補償功能。 3、 列車自動駕駛子系統(ATO) ATO子系統是控制列車自動運行的設備,由車載設備和地面設備組成,在ATP系統的保護下,根據ATS的指令實現列車運行的自動駕駛、速度的自動調整、列車車門控制。 (1)自動完成對列車的啟動、牽引、巡航、惰行和制動的控制,以較高的速度進行追蹤運行和折返作業,確保達到設計間隔及旅行速度。 (2)在ATS監控范圍的入口及各站停車區域(含折返線、停車線)進行車—地通信,將列車有關信息傳送至ATS系統,以便於ATS系統對在線列車進行監控。 (3)控制列車按照運行圖進行運行,達到節能及自動調整列車運行的目的。 (4)ATO自動駕駛時實現車站站台定點停車控制、舒適度控制及節省能源控制。 (5)能根據停車站台的位置及停車精度,自動地對車門進行控制。 (6)與ATS和ATP結合,實現列車自動駕駛、有人或無人駕駛。 五、信號系統運營模式 1 、ATS自動監控模式 正常情況下ATS系統自動監控在線列車的運行,自動向聯鎖設備下達列車進路命令,列車在ATP的安全保護下由司機按規定的運行圖時刻表駕駛列車運行。控制中心行車調度員僅需監督列車和設備的運行狀況。每天開班前,控制中心調度員選擇當日的行車運行圖/時刻表,經確認或作必要的修改,作為當日行車指揮的依據。 2 、調度員人工介入模式 調度員可通過工作站發出有關行車命令,對全線列車運行進行人工干預。調整列車運行計劃包括對列車實施「扣車」、「終止站停」、改變列車進路、增減列車等。 3、 列車出入車場調度模式 車輛調度員根據當日列車運行圖/時刻表編制車輛運用計劃和場內行車計劃,並傳至控制中心。車場信號值班員按車輛運用計劃設置相應的進路,以滿足列車出入段作業要求。 4、 車站現地控制模式 除設備集中站其他車站不直接參與運營控制,車站聯鎖和車站ATS系統結合實現車站和中央兩級控制權的轉換。在中央ATS設備故障或經車站值班員申請,中央調度員同意放權後,可改由車站現地控制。 在現地控制模式下,車站值班員可直接操從車站聯鎖設備,可將部分信號機置於自動模式狀態,也可將全部信號機設為自動模式狀態,控制中心行車調度員應通過通信調度系統與列車駕駛員、車站值班員保持聯系。 5、 車場控制模式 列車出入場和場內的作業均由場值班員根據用車計劃,直接排列進路。車場與正線之間設置轉換軌,出入場線與正線間採用聯鎖照查聯系保證行車安全。 6、 列車運行控制模式 列車在正線、折返線上的運行作業時,常用ATO自動駕駛模式和ATP監督下的人工駕駛模式,限制人工駕駛和非限制人工駕駛模式均為非常用模式。 (1)ATO自動駕駛模式 列車啟動後,在ATP設備安全保護下,車載ATO設備自動控制列車加速、巡航、惰行、制動,並控制列車在車站的停車位置,開關車門,司機僅需監督ATP/ATO車載設備運行狀況。 (2)ATP監督下的人工駕駛模式 列車啟動後,車載ATP設備根據地面提供的信息,自動生成連續監督列車運行的一次速度模式曲線,實時監督列車運行。司機根據ATP顯示的速度信息駕駛列車,當列車運行速度接近限制速度時,提出報警;當列車運行速度超過限制速度時,ATP車載設備將對列車實施制動。 (3)限制人工駕駛模式 司機以不超過車載ATP的限制速度行車,列車運行安全由司機負責,當列車超過該限制速度時,ATP車載設備則對列車實施制動。 (4)非限制人工駕駛模式 在車載ATP設備故障狀態下運用,ATP將不對列車運行起監控作用。列車運行安全由司機、調度員、車站值班員共同負責。 7 、列車折返模式 列車在ATP監督人工駕駛模式下折返時,列車由人工駕駛自到達股道牽出至折返線,由司機轉換駕駛端,並折返至發車股道。 在ATO有人駕駛模式下折返時,列車能以較合理的速度從到達股道牽出至折返線,由司機轉換駕駛端和啟動列車,然後從折返線進入發車股道。

D. 誰知道鐵道信號的發展歷史

1877年在中國台灣架設了我國第一條路上電報線。
1881年中國自辦鐵路—唐胥鐵路開通,邁出了中國自辦鐵路通信的第一步,當時採用了西門子莫爾斯電報機,作為站間閉塞和通信聯絡之用。
1881年清政府批准修建的全長1536千米,途經河北、山東、江蘇三省的津滬電報線建成通報,揭開了中國較大規模電信建設的序幕。
1896年唐胥鐵路電報線上開通了風拿波式電話。
1899年唐胥鐵路開始使用磁石電話。
1918年唐胥鐵路開始使用自動電話。
上世紀50年代對稱電纜通信技術率先在寶雞—鳳州電氣化鐵路上實現。
上世紀60年代我國第一代小同軸電纜在成都—昆明鐵路首先使用。
上世紀80年代新建的大同—秦皇島鐵路線採用了從多個國家引進的光數字通信系統,首次在我國建成長400多千米的干線光纜,並組成了鐵路通信的第一個完整的數字島。
上世紀90年代鐵路通信採用同步數字系統通信技術,並在京九線2500公里線路上一次建622Mbit/s的光通信系統。
就這么多。

E. 通信技術發展歷程

無線移動通信技術快速發展歷程和趨向(張煦)
[摘要] 本文內容分三部分:首先說明無線移動通信與有線固定通信一同快速發展的趨勢;然後
著重講述無線動通信蜂窩網從模擬至數字和即將進入第三代系統的快速發展歷程和今後趨向;
最後簡單說明無線衛星通信微波通信也要加快步伐繼續向前發展,以發揮重要作用。
[ 關鍵詞]無線通信;移動通信;蜂窩網;衛星通信
1無線移動通信與有線固定通信一同發展
人們常把有線固定通信和無線移動通信作為信息基礎結構(NII/GII)的兩大組成部分。近
年來它們都以明顯的快速步伐向前推進,而且進入新世紀後將更加快速發展,為興旺的信息時代
作出貢獻。傳統的有線固定通信網是「公用交換電話網」PSTN(Public Switched Telephone
Network),長期來一直保持平穩擴大建設,促使人們普遍裝用固定終端的電話機。但是,自90
年代中期起,國際互聯網Internet興起,使全世界的傳統通信網受到前所未有的巨大沖擊。廣大
的通信用戶開始普遍裝用計算機,數據通信的業務量每年急劇上漲,其增長率遠遠超過傳統電話
的每年增長率。按照這樣的勢頭,進入新世紀後的五年左右,全世界的數據信息業務量總數將追
上電話信息業務量總數,而且以後超過的越來越多。因此未來的通信傳送網將是以數據信息為重
點的分組交換網(Packet Switching),並且承擔電話通信的傳送,不再利用原有的電路交換
( Circuit Switching),但仍保證電話特有的業務質量(QoS)指標。隨著計算機技術改進和
功能加多,數據通信將延伸至包含音頻、視頻信息配合的多媒體通信。這樣,未來的有線固定通
信網,將能承擔所有信息業務傳送的統一通信網,必將是大容量通信網。
無線移動通信網主要是各地城市的蜂窩網(Cellul Network),每一城市分成若干個蜂窩
區,
每區中心設置無線電基台(Base Station),區內所有移動終端和個人無線手機各與基台直接經
由無線線路連通,稱為無線接入(Wireless Access)。移動通信原來是只通行動電話,近來也
和有線網一樣,容許移動用戶於需要時接上Internet,傳送數據信息,並且隨著計算機的改進,
將來也要傳送包含音頻、視頻信息配合的多媒體通信。移動終端經過無線接入基台又經由基台連
往移動通信交換中心MSC(Mobile-communication Switching Center),除了由無線線路連往

一蜂窩網的其它無線電基台外,還連往有線固定通信網的城市交換局。這意味著,無線移動通信
網要與有城固定通信網相連接。移動終端和個人便攜手機如欲與同一蜂窩區或同一城市的移動終
端或個人手機直接相互通信,當然可由無線移動通信網來接通。但無線移動通信網僅限於本城市
的蜂窩網,不同城市的蜂窩網仍需由全國性的有線固定通信網來接通。任一無線移動手機如欲實
現國內或國際通信,必須經過無線接入,然後由有城固定網接通。由此可見,有線固定通信網既
承擔所有由有線接入的各種各樣通信業務,包括原來PSTN用戶所需的通信業務,又要承擔無線接
入的各種通信業務,所以,固定網的通信業務量總數特大,而且逐年加大,在設計未來的全國有
線固定通信網時,必然要精細測算,考慮大容量而且逐年增加容量的趨勢。這就要求傳輸線路和
通信網內部設備都能方便地按需要加大容量。
鑒於過去數字通信網使用的時分多路TDM雖然作出很大貢獻,數字體系從PDH進化為SDH,但
其最高數字速率已難於再提高,因而成為通信網繼續加大容量的「電子瓶頸」。可幸,光纖作為
傳輸線路具有巨大的潛在容量可以發掘利用。而且,從90年代中期起,波分多路/密集波分多路
( WDM/DWDM)在光纖線路上投入商用,顯示出無比優越性。於是,有線通信網中的干線幾乎全
部採用光纖並裝上波分多路系統,而通信網本身內部,為了便於未來擴大容量,已開始考慮從電
網進化為光網(optical networking),採用以WDM為基的各種光器件/組件,以實現波長路由
和交換等功能,從而可以進一步加大網的容量能力。
對於使用電話通信的人們,雖然過去安裝的固定終端電話機運行可靠,但與近年推廣的便攜
無線手機相比,用戶覺得各自隨身攜帶一部手機,一個號碼,隨時隨地可以撥打電話找到對方立
即通話,比過去固定終端靈活方便得多。所以近年來移動通信手機的銷售量劇增。國際上推測,
不到2010年,全世界用戶擁有移動無線手機總數將與裝置固定電話終端機總數相等,而且用戶需
要呼叫電話時,更樂於使用手機。現在無線移動通信網不僅提供通電話,還在設法讓便攜計算機
互通數據信息甚至多媒體通信,僅僅因為無線電頻譜資源畢竟有限,無線移動通信能夠提供每路
信號的頻帶寬度沒有象有線固定通信那樣寬裕。所以,在用戶需用帶寬很大的通信業務的情形,
例如用戶上網需要Internet/WWW長時間提供特別大量數據信息,或者用戶需』要在家裡收看特定
的高質量文娛電視節目或電影片時利用「點播電視/電影」VOD/MOD業務,就有必要利用「有線
接入」。
概括地說,進入新世紀不到十年,對通信業務的發展有兩個極其重要的預測:一是大約2005
年全世界數據信息業務量總數追上與傳統電話業務量總數相等,其後逐年超過;二是大約201O年
全世界無線移動通信用戶總數增加多至與傳統有線固定通信用戶總數相等。由此有線固定通信網
的容量將越來越大,而無線移動通信網的手機越來越普遍,今後兩類通信網技術必將一同持續地
-快速發展。
2 蜂窩網從模擬至數字、將進入第三代
無線移動通信最基本和最主要的一種是利用蜂窩網方式。它避免了一個城市使用大功率無線
電發射台、覆蓋直徑40km面積的舊設想,而把一個城市按蜂窩網形狀劃分為若干互相靠近的六角
形區(cell),每區圖形半徑可以小於1km.在這樣的蜂窩區的中心設立無線電基台BS(base
station),發射功率較小,可與區內所有移動終端MS(mobilestation)或個人隨身攜帶的手機
隨時取得聯系。當某一MS從一區移動至鄰近區,就改與鄰近區的BS聯系,稱這種「交接」為「越
區切換」。某區BS使用的波長與鄰近區BS的波長不同,但與隔一、二區的波長可以相同,稱為
「頻率再利用」,不會引起干擾,這是蜂窩網的優點,節約利用無線電頻譜資源。80年代初期,
蜂窩網移動通信開始商用,那時使用模擬電話,由於集成電路進步快,又由於話音編碼和數字通
信技術研製都很成功。到了80年代下半期,蜂窩網發展至數字式,稱為第二代ZG(second
generation).在過渡時期移動手機可以雙模運用,既可用於模擬電話,又可用於數字電話。那時
歐洲有標准組織 GSM(Groupe Special Mo-bile),後來在900MHz頻譜普遍運用的第二代稱為
GSM(Global System for Mobile Communications)。在開始時數字式行動電話利用「時分多
址」TDMA(Time Division Multiple Access)。90年代中期,又出現「碼分多址」CDMA
(Code
Division Multiple Ac- cess),也在90年代中期,美國指定1850-1990MHz的 14OMHz寬度

頻譜,供「個人通信業務」 PCS(Personal Communication Service)使用,這些都一直持續
至90年代後期,保持不斷的發展勢頭。
正在2G系統技術持續蓬勃發展的時期,國際上開始議論第三代移動通信3G(third
generation)的前景,既要盡量採用可預見的先進技術,又要照顧現已裝置的系統設備,再要訂
定全世界都認可的標准,普遍稱為IMT-2000(International MobileTelecommunication),設

採用2000MHz頻譜,於2000年起開始試用。這種3G系統不僅保持行動電話,還要十分重視開展數
據通信,使無線系統和有線通信網一樣重視數據傳輸,包括Internet/互聯網規約IP和寬頻業務,
以至數據速率為2Mb/s的多媒體通信。國際標准組織已經評審各國提交的無線電傳輸方案,包
括我國的方案,有頻分雙工FDD(Frequency Duplex) CDMA、TDMA,還有時`分雙工TDD(Time
Division Duplex)的CDMA。總是沒法使無線通信在性能、成本和容量等方面都顯出優勢。
在無線數字式移動通信,為了充分節約利用頻譜,話音編碼(Speech Coding)技術非常重
要。這與有線通信大不相同,有線數字電話利用脈碼調制PCM, 每路電話64kb/s,或自適應脈碼
調制AD-PCM,每路32kb/s,對通信網路容量沒有困難。無線通信的話音編碼,從早期的「線性
預測編碼」LPC(Linear Predictive Coding),至80年代開始的「碼激勵線性預測」 CELP
(Code Excited Linear Pre-diction),每路話音的數字速率降至 5~13kb/s。同時,在編碼
過程中還要考慮克服無線電波傳播過程引起損害和背景噪音,保證通話質量。到了3G系統,還
要考慮多媒體通信所需的音頻和視頻的編碼技術,既節約頻譜、又保證通信質量。
每一無線電基台一般需要設置幾套射頻收發信機(RF transceiver).現在從模擬過渡至數
字化,將充分利用數字信號處理DSP和專用大規模集成晶元ASIC,並趨向於使用越來越多的新型
軟體,導致可編程(programmable)的基台,容許使用多種空中介面(air interface)標准。
基台將使用寬頻線性功率放大和寬頻射頻器件,便於增加數字內容,使數字處理盡量靠近天線,
使多個射頻同時處理,又使軟體完成更多的功能。由於數字移動通信支持多個用戶利用CDMA或
TDMA多址通信,數字式可比模擬式減少無線電收發信機數,可在較寬頻帶進行處理,又容許在
較高頻率處理,從基帶至中頻又至射頻都利用數字處理。當基台這樣充分利用可編程器件時,
它們就稱為「軟體無線電」(software。Ra-dio),變得相當靈活,而且容許基台設備更容易配
合「智能無線」(smart antenna或intelligent anten-na).移動終端和無線手機也將趨向於
軟體無線電。當業務和標准技術有所改變時,軟體無線電可以很快適應新技術,不需大量更換
設備,因而投資成本可以降低。
加多利用數字信號處理,可促使無線通信的智能天線技術得到有利的發展。智能天線需要
使用多個天線。基台往往有幾個定向天線,各分管一個扇形區,對該區內移動終端的無線接入
特別有利,還可能讓多個束射經過自適應過程進行快速換接,以獲得最好的孔徑增益、分集增
益、和遏止干擾,導致性能改進。接收天線如採用兩個天線分支,在空間有足夠的隔開,就可
獲取空間分集的好處,如只有一個無線,則利用極化分集也可得到好處。在自適應智能天線,
發送裝用多個天線,可取得更多好處。對於TDMA系統,智能無線可以加大通信容量,由反向線
路傳來的信號進行處理,可使正向線路的束射調整得最好。對於CDMA系統,所有移動終端使用
同一頻帶,只是編碼不同。到了3G系統,用戶如使用較高數據速率,可以指定特殊符號(pilot
symbol)以控制自適應天線處理來減小用戶間的干擾,從而加大通信容量,即在有幾個用戶
使用高速數據時仍容許較多用戶通電話。
無線移動通信網有時為了公共安全的原因,需要相當精確地測定某一移動終端或個人在某
一時間移動至地理上的位置,稱為定位技術(geoloca-tion)。現在已有一種獨立的手持機能
夠附帶設備,利用全球定位系統(GPS,global positioning system),在室外測定移動個人
自己的位置。將來進入3G時代,個人移動無線手機本身可能附有定位功能,它在得到網的協助
下進行定位工作,不必另外攜帶獨立的GPS手持機。就是說,新式的移動通信手機附裝協助的
AGPS(assisted GPS), 測定自己在室外,甚至室內的地理位置。通信手機於需要時由網提供
情況,不必由通信手機本身連續跟蹤GPS衛星。
蜂窩網3G系統向未來的分組交換有線網看齊,著重於提供盡量高速率的數據通信。蜂窩網
也要提供不對稱數字傳輸。象有線網的不對稱數字用戶線ADSL那樣,無線電基台至用戶的方向
提供較高速率的數據傳輸。有線網是在交換局設置多載波離散多音調(DMF,Discrete
Multi-Tone)裝備,而無線網是在基台設置多載波正交頻分多路( OFDM,Orthogonal
Frequency Division Multiplex)裝備,這對於移動用戶接上Internet索取大量信息時非常需
要。
3衛星通信和微波通信有重要作用
無線移動通信除了大部分依靠城市蜂窩網、如上節所述外,還有衛星通信也非常重要,大
有發展前途。同步衛星對固定通信和廣播已經多年實踐證明極為可靠,還可有利地提供遠程移
動通信、低軌 道、中軌道衛星通信。如在技術、設備、成本各方面深入研究,仍能大有作為,
對全球個人移動通信發揮作用。同溫層(平流層)無線通信已有方案提出,如繼續具體研究,
對固定通信和移動通信都有獨特作用。此外,無線固定通信包括人們熟知的微波數字接力通信
和最近提倡的無線用戶環路(WSL,Wireless Subscriber Loop),在人口較少的地區很適用,它
們與建設光纖光纜和有線市內電話用戶線相比,有建設較快、投資較少的優點。毫米波無線電
通信和無線紅外線通信已在多處安裝試驗,證明對短距通信有好處。總之,國際上不少實際應
用和試驗經驗表明,無線通信優點很多,值得擴大實際使用范圍。可以斷言,在進入新世紀後,
無線通信必將與有線通信一同快速發展和互相配合應用,不愧為信息基礎結構的兩大組成部分。
同步軌道運行的衛星過去提供可靠的國際通信和電視傳播,享有盛譽。近年加強開發,尤
其對衛星內部的轉發器(transponder),放寬傳輸頻帶、加大發射功率、改進天線效率,甚至
加裝ATM設備,擴大業務功能,以致地面應用越來越增多。一種應用是在地上安裝「甚小孔徑
天線」的衛星站,稱為VSAT,為大企業的廣域專用通信提供方便。同步衛星也可能對地面提供
遠距移動通信,但地面移動 終端需裝較大的對星天線,而且在高樓林立的城市 中心電波傳
播有困難。為此,對地面的全球移動通信,曾另行研製發射低軌道、離地面幾百至一千公里的
幾十顆移動衛星族,稱為 LEO(Low Earth Or-bit)。又曾研製發射中軌道、離地約一萬公里
的十顆移動衛星族,稱為MEO( Medium Earth Orbit)。[相應地,原來離地面36,000km、與地
球同步運行的三顆衛星族,稱為 GEO(Geostationary Earth Or-bi)]。雖然最近LEO系統
Iridium在開放商用後不久就受到挫折,另一系統Globalstar正在開放商用,可能順利進行,
但應該冷靜地對待。這些LEO/MEO全球無線移動通信系統的理論和技術是正確的,但經營商對
用戶需求的條件、移動手機的設備和成本,以及向用戶收費不宜過貴等問題,似乎預先考慮得
不夠周到。如能認真吸取經驗,仔細分析原因,很可能得到圓滿成功,我們可以熱情期待著美
好的前途。無線固定通信也要向前發展,充分利用無線特有的優點,但無線通信受到無線電頻
譜資源的限制,為了繼續開發應用,必須考慮提高運用頻率或縮短運用波長,即從微波(厘米
波)延伸至毫米波、甚至紅外波。在這樣的延伸進程中,必將遇到新的電波傳播問題和器件問
題,都要逐一妥善解決,應該受到有關各方的支持和鼓勵。

閱讀全文

與軌道交通信號技術的發展歷程相關的資料

熱點內容
廣佛地鐵出口地圖 瀏覽:273
武漢地鐵報站英文 瀏覽:92
白石高鐵站 瀏覽:294
北京地鐵安全隱患 瀏覽:382
南京東善橋地鐵 瀏覽:905
深圳地鐵列車有多長 瀏覽:556
金洲地鐵站到廣州火車站地鐵要多久 瀏覽:783
南京地鐵機場線單程時間 瀏覽:161
乘地鐵去佛山東建世界廣場 瀏覽:498
惠州仲愷深業喜悅城地鐵規劃 瀏覽:378
天府廣場到韋家碾地鐵價格 瀏覽:112
萬菱匯地鐵出口 瀏覽:402
長水機場到大觀樓地鐵 瀏覽:704
廣州t2機場那個地鐵站 瀏覽:909
s7地鐵南京運行時間 瀏覽:943
高鐵為什麼夜間不開行 瀏覽:500
西安門地鐵站怎麼去南京眼 瀏覽:480
廣州火車站去廣州機場地鐵 瀏覽:694
成都地鐵站項目總監招聘 瀏覽:691
佛山地鐵廣州火車站 瀏覽:965